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What is machine learning?

Unsupervised learning
* Dimensionality reduction
e Clustering
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 Classification
* Regression
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Cross-validation
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What is machine learning?

* |n statistics, a project-specific probability
model is fitted and quantitative measures of
confidence are calculated

* In machine learning, general purpose
learning-algorithms are applied on data to

find patterns and perform predictions



What is machine learning?

Gene rankings Gene rankings Gene identification
from classical statistics from random forest performance
* Machine learning methods are 100} Y 3 _ 4004
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e Often both (frequentist)

. - Figure 2 | Analysis of gene ranking by classical inference and ML.
statistics a nd ML prOd uce ‘ (a) Unadjusted log-scaled P values from statistical differential expression
com pa ra ble resu ItS analysis as a function of effect size, measured by fold change in expression.

(b) Log-scaled P values from a as a function of gene importance from
random forest classification. In a and b, red circles identify the ten
differentially expressed genes from Figure 1; the remaining genes are

e Different types of analyses indicated by open circles. (c) Distribution of the number of dysrequlated
Compliment eaCh Other in genes correctly identified in 1,000 simulations by inference (gray fill) and

random forest (black line).

microbiome data science Bzdok et al. (2018); https://www.nature.com/articles/nmeth.4642



What is machine learning?

- Supervised learning Unsupervised learning
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What do we
already know of

unsupervised
HEIE
learning?
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What is unsupervised machine learning?

* Unsupervised learning is used to detect
patterns in data

e “Data mining”

* Can be divided into
* Dimensionality reduction / ordination
» Summarizing data in lower dimensions
* Clustering
» Finding groups



Dimensionality reduction / ordination

e Reduces dimensions of the data

* Preserves relationships between samples as well as
possible
* Projection of the data into lower dimensions
* Aim is the “compression” of the variables

* New dimensions can be used as (proxy) variables

e Other variables can be fit in the ordination space to
examine their relationship with the compressed data



Commonly used ordination methods

e Correspondence Analysis (CA)
e Based on chi-square distance

* Multidimensional Scaling

* Based on any (dis)similarity / distance
» Many metrics can be used for microbiome data
* Principal Coordinates Analysis (PCoA)
* Tries to capture most of the variation in the
(dis)similarity matrix in the first few axis
Non-metric MultiDimensional Scaling (NMDS)
* Non-parametric rank-based method (very robust)

Tries to represent the pairwise dissimilarity most
accurately usually in 2-d space



Commonly used ordination methods

e Correspondence Analysis (CA)
e Based on chi-square distance

Whatis a distance metric?

* Multidimensional Scaling
* Based on any (dis)similarity / distance
» Many metrics can be used for microbiome data
* Principal Coordinates Analysis (PCoA)
* Tries to capture most of the variation in the
(dis)similarity matrix in the first few axis
* Non-metric MultiDimensional Scaling (NMDS)
* Non-parametric rank-based method (very robust) .
* Tries to represent the pairwise dissimilarity most M o
accurately usually in 2-d space

Scalar function d(.,.) of two arguments

d(x, y) >=0, always nonnegative;

, X) = 0, distance to self is 0;

d(x, x
d(x, y) =d(y, x), distance is symmetric;
d(

X, y) <d(x, z) + d(z, y), triangle inequality.




Principal Component Analysis

* Principal Component Analysis (PCA)
* Based on linear combinations of variables between samples — a ‘rotation’ of the data
* Tries to maximize variability in the first dimensions (which can still be visualized)
* Linearity is preserved, so the dimensions can be used in further analyses

encoded dimension 1

Point Initial Encoded Decoded
A (-0.50,-0.40) -0.63 (-0.54,-0.33)
B
B + C (0.10, 0.00) 0.09 (0.07 0.04)
/ D (0.30,0.30) 0.41 (0.35,0.21)
E (0.50,0.20) 0.53 (0.46,0.27)
+A
== initial @ encoded (projection) e information lost

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73



https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

encoder

e

Autoencoders

= mp lossless encoding
no information is lost
decoder when reducing the
d number of dimensions
= » lossy encoding

some information is lost
when reducing the
number of dimensions and
can’t be recovered later

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73



Autoencoders
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o
initial dim 2
Data in the full initial space Data projected on the best linear subspace
In order to reduce dimensionality, PCA and linear autoencoder ... but not necessarily with the same basis due to different constraints
target, in theory, the same optimal subspace to project data on... (in PCA the first component is the one that explains the maximum

of variance and components are orthogonal)

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73



Use examples of dimensionality reduction

PCA of variables in
lake sediment samples

a) Differences in nasal microbiota between b) Differences in skin microbiota
adolescents from Finnish and Russian between urban and rural children
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Ruuskanen et al. (2018)

Ruokolainen et al. (2017)



tSNE and UMAP

* Non-linear transformations of the data to minimize distance
between similar points and maximize distance between
groups

e Datais projected into lower dimensions

* Highly stochastic — result is dependent on hyperparameters

* Demo: https://pair-code.github.io/understanding-umap/



https://pair-code.github.io/understanding-umap/

Clustering

* Aims to find groups of similar features or samples

* Different feature or sample sets can be used for
clustering

* Can be used to e.g., detect biologically meaningful
patterns

» Cell types clustered by gene expression
» Groups of microbial taxa associated with a disease



Hierarchical clustering

* Agglomerative clustering
 Observations start as individual clusters, which
are gradually merged

* Divisive clustering
* Observations start as one single cluster, which is
gradually divided



Hierarchical clustering

Results of different linkage functions vary

Single Linkage Average Linkage Complete Linkage Ward Linkage

Agglomerative clustering with Ward linkage (min SS)

Hierarchical Clustering Dendrogram
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https://scikit-learn.org/stable/auto _examples/cluster/plot linkage comparison.html
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Biclustering

Both rows and columns of a data matrix are clustered
simultaneously

Aim is to find groups of co-occuring features (or biclusters)
» Which metabolites co-occur with which microbial taxa?

“Biclusters are subspaces where a subset of rows ... exhibit

a correlated pattern over a subset of columns ...”
(Henriques & Madeira, 2015; https://doi-org/10.1109/TCBB.2014.2388206)

Various algorithms exist, which re-organize the rows and
columns to form biclusters


https://doi-org/10.1109/TCBB.2014.2388206

Biclustering

log, Tatio to median
-2 N wising date

Both rows and columns of a data matrix are clustered
simultaneously

Aim is to find groups of co-occuring features (or biclusters)
»  Which metabolites co-occur with which microbial taxa?

Biclusters

“Biclusters are subspaces where a subset of rows ... exhibit a

correlated pattern over a subset of columns ...”
(Henriques & Madeira, 2015; https://doi-org/10.1109/TCBB.2014.2388206)

Various algorithms exist to re-organize the rows and columns
to form biclusters
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Li et al. (2009); http://dx.doi.org/10.1093/nar/gkp491
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Use examples of clustering

Phylogenetic data

Phylogenetic data Functional predictions
A B ; C
(only functionally mapped OTUs)
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Ruuskanen et al. (2018); https://www.frontiersin.org/articles/10.3389/fmicb.2018.01138
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Evaluation of clustering - Silhouettes

e Silhouette plots and Silhouette coefficients can be
used to estimate the quality of the clustering

 Silhouette coefficient s(i):

b(i) — a(i)
max{a(i), b(i)}

s(i) =

e j=data pointin a cluster
* qa(i) = average distance of i to all points in the same cluster
* b(i) = average distance of i to all points in the nearest cluster



Evaluation of clustering - Silhouettes

Silhouette analysis for KMeans clustering on sample data with n_clusters = 2 S||houette score |S . 0 70 Silhouette analysis for KMeans clustering on sample data with n_clusters = 3 S|Ih0uette score |S . 0 65
The silhouette plot for the various clusters. The visualization of the clustered data. The silhouette plot for the various clusters. The visualization of the clustered data.
75 75
/‘
1 y K
// 5.0 =0 @
_ 25 25
v v
2 2
] ]
& &
T 00 T 00
o N - T N -
8 v 2 v
= £ = £
i 8 g 8
a s 2.5 i : 55
S ® “ cl ® “
& &
0 M o
5 -5.0 ° 5 —50 °
H H
& & -
-7.5 7.5 ®
-10.0 -10.0
-01 00 0.2 0.4 0.6 0.8 10 -12 -10 -8 -6 -4 -2 0 -01 00 0.2 0.4 0.6 0.8 10 -12 -10 -8 -6 -4 -2 0
The silhouette coefficient values Feature space for the 1st feature The silhouette coefficient values Feature space for the 1st feature
Silhouette analysis for KMeans clustering on sample data with n_clusters = 5 S||h0uette score Is : O 59 Silhouette analysis for KMeans clustering on sample data with n_clusters = 4 S||hou ette score iS . O 56
The silhouette plot for the various clusters. The visualization of the clustered data. The silhouette plot for the various clusters. The visualization of the clustered data.
T 75 T 7.5
! 1
i
4 ! !
! 3 | +
| 5.0 | 5.0
i | @,
: : :
3 f 25 . ot l ~ . 257
: v . . y £
i 2 y g
: i , . i
— | T 00 T 004
_ ~ @ ~
< — | s = _ £
2 - : 2 25 o % £ 25
2 7 - 5] &
° g . N & (©]
1 o . .
% -5.0 tC 5 -504 L K
g . g
-15 ' @ -1.5 I @
0 ® 0 X
g ~10.0 -10.0
i
—01 00 02 04 06 08 10 12 1o s 6 a ) 0 —01 00 02 04 06 08 1.0 —12 1o 8 iy B 2 o
The silhouette coefficient values Feature space for the 1st feature The silhouette coefficient values Feature space for the 1st feature

https://scikit-learn.org/stable/auto examples/cluster/plot kmeans silhouette analysis.html
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Where does supervised ML fit?

- Supervised learning Unsupervised learning

_8 oo o
3 Classification or ,
o .. Clustering
3 categorization
Variable
5
S
S Regression Dimensionality reduction
S



What do we
already know of

supervised
machine
learning?
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What is supervised machine learning?

* Given (Xll yl)/ (X2/ y2)/ ERY (an yn)
e Learn a function f(x) to predict y, given x,

or: y = f(x)

e Supervised ML methods are:
e Often nonparametric -> flexible
 Able to take interactions between features into account



Problems suited for supervised ML

Labeled data
» Examples where the true values of y are known

Big data
» Nearly all high-throughput sequencing data
» Image and textual data (with applications in microbiology)

Complex interactions
> Data from microbial communities

For example:

e Spatial and temporal patterns

* Disease diagnosis and prediction
 Modeling of environmental interactions



“Doing” supervised machine learning

1. Know your system and data
. Biological understanding?

2. Split to train and test / validation sets
. Models are validated by predicting on previously unseen data
. For example 70% train / 30% test

3. Selection and training of the first model

4. Adjusting and selecting features, model architectures and
hyperparameters

5. Final evaluation of the model with predictions on test data
Various performance metrics are available

6. (optional) Deployment of the model to production



Classification

Feature b

Feature a



Classification

Train Test / predict

Feature b
Feature b

Feature a Feature a



Regression

Train

Target
@)
O

Feature a



Regression

Train Test / predict

Target
@)
O

Prediction

o/ -

Feature a Feature a




Data curation and annotation

e ‘garbage in, garbage out’, was first noted well over a
century ago (Babbage, 1864); Passages from the Life of a Philosopher.

e Can the data be trusted?

* Labels need to be as accurate as possible
* Manual annotation, or at least curation is often required

* Recoding and encoding of variables?

* In microbiome data, counts need to be compositionally

transformed
* For example, centered log-ratio, phylogenetic ILR...




One-hot encoding Continuous encoding
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Adapted from Greener et al. (2021); https://www.nature.com/articles/s41580-021-00407-0
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Cross-validation and evaluation

* How do we know if our model has learned something from
the data?

e We want the model to focus on relevant features and
not fit to noise (overfit)

* We are making a model for y = f(x), thus we can compare
the true or known values of y against predicted values of y

* |f we would test with the same data we trained with, the
flexible models would be able to give perfect accuracy!



Cross-validation

» Testing / validation needs to be done with new data
* Testing is conducted both during training and at final evaluation

* Multiple ways to conduct cross-validation (CV):

* Holdout: complete separation of train and test sets
* For example, 70%/30% or 80%/20%

* Leave-p-out CV
e K-fold CV

e Spatial or temporal CV



Leave-p-out cross-validation

1 Test Train
n=8 L B

Banuelos (2020); https://commons.wikimedia.org/w/index.php?curid=87684543

T
|
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Simple holdout and k-fold CV

‘
Validation

120 3]4]5

k-fold cross-validation
(k =5)

Adapted from Greener et al. (2021); https://www.nature.com/articles/s41580-021-00407-0
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Nested cross-validation

Used to train « Used to assess
model : performance

L
Validation | Testing

—
1| 2| 3|45

k-fold cross-validation
(k =5)

Adapted from Greener et al. (2021); https://www.nature.com/articles/s41580-021-00407-0
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Spatial cross-validation

fold 1 fold 2 fold 3 fold 4 fold 5

|
random partitioning

9557000 9559000 9561000
|
spatial partitioning

I | [ | | | | | | | | | | | I I
713000 715000 713000 715000

training data test data

Lovelace et al. (2021); https://geocompr.robinlovelace.net/spatial-cv.html
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Temporal cross-validation
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Hyndman & Athanasopoulos (2021); https://otexts.com/fpp3/tscv.html
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Evaluation - Classification

Confusion matrix for binary classification

Actual

Positive Negative

True Positive (TP) False Positive (FP)

Positive

Predicted

False Negative (FP) i Nesase ()

Negative



Evaluation - Classification

* Simple classification metrics:

1. Accuracy = Correct predictions / All cases
e TP+TN/TP+FP+TN+FN

2. Sensitivity, or Recall = Correct positives / All actual positive cases
« TP/TP+FN

3. Specificity = Correct negatives / All actual negative cases
« TN/TN+FP

4. Precision = Correct positives / All predicted positive cases
« TP/TP+FP

* Increasing precision reduces recall / Increasing recall reduces precision!



Evaluation - Classification

» Dealing with precision/recall tradeoff
* Some classification methods output probabilities between 0 and 1

e F1 score = Harmonic mean between precision and recall

Precision x Recall

F1 score =2 x
Precision + Recall
* Not sensitive to extremely large values in either one
e Balances both metrics in a single figure
* Does not account for true negatives (which might be important)



Evaluation - Classification

* Receiver operator characteristic curve (ROC) Perfect
P 0c.lassiﬁer ROC curve

Better

* False positive rate (FPR): Fraction of actual

negative cases incorrectly classified as positive o y
* Also, 1 - specificity g i \
= & Worse
* True positive rate (TPR): Fraction of actual é 0-5 /\(b@?’\'
positive cases correctly classified as positive D //(QO
* Also, recall / sensitivity = //;@O
//
e Area under ROC (AUC) summarizes ROCin a 0.0 ¥
single number 0.0 0.5 1.0
0.5 =random classifier Cmglee & Thoma (2018F)alse positive rate

https://commons.wikimedia.org/w/index.php?curid=109730045

* 1.0 = perfect classifier


https://commons.wikimedia.org/w/index.php?curid=109730045

Evaluation - Classification

ROC - P: 54, N: 204 Precision-Recall - P: 54, N: 204
1.00 A 1.00 A
AUC=0.78 AUPRC =0.51
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o o
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Ruuskanen et al. (2021); https://doi.org/10.1080/19490976.2021.1888673
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Evaluation - Regression

* Multiple ways to evaluate model error with numeric y
* y; =truevalue
e y; = predicted value

e Mean absolute error (MAE) * Root mean squared error (RMSE)
e MAE = Zi=ilYi=¥il + RMSE = MSE
n « Same unitasy

* Sameunitasy

,  Not robust to outliers
 Robust to outliers

 Mean squared error (MSE)

° MSE — ?zl(yi_jl\i)z
n
e Squared units of y

 Not robust to outliers



Evaluation - Regression

Total sum of squares Residual sum of squares

A;V

* Rsquared (R?) f
o 2 . SSres
RE=1 SStot o J

Ay
y
 Ranges betweenOand 1 .
* Units are % of variance explained
@

X X

> >

Orzetto (2010); https://commons.wikimedia.org/wiki/File:Coefficient of Determination.svg
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Issues & Solutions

* The data scientist applying supervised ML should be
aware of several issues:

 Model performance
* Over- and underfitting

* Overestimation of performance
(data leakage)

* Model applicability
 Computational costs
* Interpretability



Over- and underfitting

I e Data point

Model

Underfit Good fit e Overfit

Greener et al. (2021); https://www.nature.com/articles/s41580-021-00407-0
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Over- and underfitting

IV o Data point
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Underfit Good fit . Overfit
4 Learning rate 4 Early stopping

N— —__Too low

Too H‘ighj

Loss
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Training set
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Training time Time

Greener et al. (2021); https://www.nature.com/articles/s41580-021-00407-0
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Overestimation of performance

0.94

0.84

Classifier Performance (AUC)

0.74 L4 ®

30 100 300 1000 3000
Total Sample Size

Figure 4: A scatter plot of the Abstract-reported AUC (y-axis) as a function of sample size (x-axis).
Studies with larger sample sizes tended to report lower AUCs (p = —0.31; p = 0.0013).

Quinn (2021); https://arxiv.org/abs/2107.03611
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Overestimation of performance

Used to train : Used to assess
model | performance

Training

0.94

Validation | Testing

k-fold cross-validation

0.84

Classifier Performance (AUC)

Greener et al. (2021); https://www.nature.com/articles/s41580-021-00407-0

0.74 L °

30 100 300 1000 3000
Total Sample Size e Data Ieakage?

Figure 4: A scatter plot of the Abstract-reported AUC (y-axis) as a function of sample size (x-axis). » Same or related sam ples
Studies with larger sample sizes tended to report lower AUCs (p = —0.31; p = 0.0013). > Features unavailable in new data

Quinn (2021); https://arxiv.org/abs/2107.03611
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Interpretability

* Depending on the study question, a more easily interpretable model might be
more useful than a better predicting one

 Parametric models are easier to directly interpret than complex ensembles

* Partial dependence of y on individual features and their combinations can be

examined even in "black box” models
A partial dependence plot shows the marginal effect of one or more input features on the
model prediction



Partial dependence plots

Partial dependence of high fatty liver risk group on baseline age,
with 6 spatially cross-validated XGBoost models.

Partial dependence of house value on non-location features
for the California housing dataset, with Gradient Boosting 08 7 e
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Scikit-learn developers (2021); 30 40 50 60 70
https://scikit-learn.org/stable/modules/partial dependence.html Age at baseline

Ruuskanen et al. (2021); https://doi.org/10.1080/19490976.2021.1888673
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